Package: BayesianTools 0.1.8
BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics
General-purpose MCMC and SMC samplers, as well as plots and diagnostic functions for Bayesian statistics, with a particular focus on calibrating complex system models. Implemented samplers include various Metropolis MCMC variants (including adaptive and/or delayed rejection MH), the T-walk, two differential evolution MCMCs, two DREAM MCMCs, and a sequential Monte Carlo (SMC) particle filter.
Authors:
BayesianTools_0.1.8.tar.gz
BayesianTools_0.1.8.zip(r-4.5)BayesianTools_0.1.8.zip(r-4.4)BayesianTools_0.1.8.zip(r-4.3)
BayesianTools_0.1.8.tgz(r-4.4-x86_64)BayesianTools_0.1.8.tgz(r-4.4-arm64)BayesianTools_0.1.8.tgz(r-4.3-x86_64)BayesianTools_0.1.8.tgz(r-4.3-arm64)
BayesianTools_0.1.8.tar.gz(r-4.5-noble)BayesianTools_0.1.8.tar.gz(r-4.4-noble)
BayesianTools_0.1.8.tgz(r-4.4-emscripten)BayesianTools_0.1.8.tgz(r-4.3-emscripten)
BayesianTools.pdf |BayesianTools.html✨
BayesianTools/json (API)
NEWS
# Install 'BayesianTools' in R: |
install.packages('BayesianTools', repos = c('https://florianhartig.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/florianhartig/bayesiantools/issues
bayesecological-modelsmcmcoptimizationsmcsystems-biology
Last updated 10 months agofrom:661e126ace. Checks:OK: 4 NOTE: 5. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 21 2024 |
R-4.5-win-x86_64 | NOTE | Nov 21 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 21 2024 |
R-4.4-win-x86_64 | NOTE | Nov 21 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 21 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 21 2024 |
R-4.3-win-x86_64 | OK | Nov 21 2024 |
R-4.3-mac-x86_64 | OK | Nov 21 2024 |
R-4.3-mac-aarch64 | OK | Nov 21 2024 |
Exports:applySettingsDefaultbridgesamplecalibrationTestcheckBayesianSetupconvertCodacorrelationPlotcreateBayesianSetupcreateBetaPriorcreateLikelihoodcreateMcmcSamplerListcreateMixWithDefaultscreatePosteriorcreatePriorcreatePriorDensitycreateProposalGeneratorcreateSmcSamplerListcreateTruncatedNormalPriorcreateUniformPriorDEDEzsDICDREAMDREAMzsgelmanDiagnosticsgenerateParallelExecutergenerateTestDensityMultiNormalgetCredibleIntervalsgetPanelsgetPossibleSamplerTypesgetPredictiveDistributiongetPredictiveIntervalsgetSamplegetVolumeGOFlikelihoodAR1likelihoodIidNormalMAPmarginalLikelihoodmarginalPlotmergeChainsMetropolisplotDiagnosticplotSensitivityplotTimeSeriesplotTimeSeriesResidualsplotTimeSeriesResultsrunMCMCsampleMetropolissmcSamplerstopParalleltestDensityBananatestDensityInfinitytestDensityMultiNormaltestDensityNormaltestLinearModeltracePlotTwalkupdateProposalGeneratorVSEMvsemCVSEMcreateLikelihoodVSEMcreatePARVSEMgetDefaultsWAIC
Dependencies:apeaskpassbase64encbootbridgesamplingBrobdingnagbslibcachemclicodacodetoolscolorspacecommonmarkcpp11crayoncrosstalkcurldata.tableDHARMadigestdoParalleldplyrellipseemulatorevaluateexpmfansifarverfastmapfontawesomeforeachfsgapgap.datasetsgenericsggplot2gluegmmgtablehighrhtmltoolshtmlwidgetshttpuvhttrIDPmiscisobanditeratorsjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclelme4lmtestmagrittrMASSMatrixmemoisemgcvmimeminqamsmmunsellmvtnormnlmenloptrnumDerivopensslpillarpkgconfigplotlyplyrpromisespurrrqgamR6rappdirsrbibutilsRColorBrewerRcppRcppEigenRdpackrlangrmarkdownsandwichsassscalesshinysourcetoolsstringistringrsurvivalsystibbletidyrtidyselecttinytextmvtnormutf8vctrsviridisLitewithrxfunxtableyamlzoo
Interfacing your model with R
Rendered fromInterfacingAModel.Rmd
usingknitr::rmarkdown
on Nov 21 2024.Last update: 2024-01-26
Started: 2019-07-31
Bayesian Tools - General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics
Rendered fromBayesianTools.Rmd
usingknitr::rmarkdown
on Nov 21 2024.Last update: 2024-01-26
Started: 2016-12-26